総評:

- おおむねよくできていました.平均点は81.5点です.大問2は特に基本的です.正確に計算できるようにしましょう.
- 大問 5 の広義積分のところは少し甘く採点しました.広義積分の定義からしっかり書いてある解答は少ない方でした.例えば,5(1) で,2 つの広義積分 $\int_{-\infty}^{0} \frac{2}{e^{x}+e^{-x}} \, \mathrm{d}x = \lim_{M \to -\infty} \int_{M}^{0} \frac{2}{e^{x}+e^{-x}} \, \mathrm{d}x, \int_{0}^{\infty} \frac{2}{e^{x}+e^{-x}} \, \mathrm{d}x = \lim_{N \to +\infty} \int_{0}^{N} \frac{2}{e^{x}+e^{-x}} \, \mathrm{d}x$ がすべて収束するとき,広義積分 $\int_{-\infty}^{\infty} \frac{2}{e^{x}+e^{-x}} \, \mathrm{d}x$ が収束すると言って,その値を

$$\int_{-\infty}^{\infty} \frac{2}{e^x + e^{-x}} dx = \lim_{M \to -\infty} \int_{M}^{0} \frac{2}{e^x + e^{-x}} dx + \lim_{N \to +\infty} \int_{0}^{N} \frac{2}{e^x + e^{-x}} dx$$

と定義するのでした。すなわち,定積分 $\int_M^0 \frac{2}{e^x+e^{-x}}\,\mathrm{d}x$, $\int_0^N \frac{2}{e^x+e^{-x}}\,\mathrm{d}x$ を計算し,その極限を取るというが正しい流れです (下記の解答例を参考にしてください)。広義積分に対しても置換積分法が使えますが,本当に理解した上で実行していますか?広義積分を定積分と同じ気持ちで計算すると,間違った結果を導いてしまう危険性があります。 $\int_{-1}^1 \frac{1}{x}\,\mathrm{d}x$ はその一例です (講義でやりました)。もう一度,広義積分を考える理由を思い出してください.

- 計算ミスを減らすために:
 - 不定積分したときは,微分して確かめる
 - 多項式の割り算,部分分数展開,合成関数の微分には気をつける

1.

$$\frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{\cos^2 \frac{x}{2}} = \frac{1}{2} \cdot \left(1 + \tan^2 \frac{x}{2}\right) = \frac{1 + u^2}{2}, \qquad \sin x = 2\sin \frac{x}{2}\cos \frac{x}{2} = 2\tan \frac{x}{2}\cos^2 \frac{x}{2} = \frac{2u}{1 + u^2},$$

$$\cos x = 2\cos^2 \frac{x}{2} - 1 = \frac{1 - u^2}{1 + u^2}.$$

2. (1)
$$\int \frac{1}{x^2 + 3x + 2} \, dx = \int \frac{1}{(x+1)(x+2)} \, dx = \int \frac{1}{x+1} \, dx - \int \frac{1}{x+2} \, dx = \log \left| \frac{x+1}{x+2} \right|.$$

$$(2) \ \int \frac{x}{x^2 + 6x + 11} \ dx = \int \frac{x}{(x+3)^2 + 2} \ dx = \frac{1}{2} \log(x^2 + 6x + 11) - \frac{3}{\sqrt{2}} \ Arctan \ \frac{1}{\sqrt{2}} (x+3).$$

(3) 部分積分法を 2回適用する:

$$\int x^2 e^x \, dx = \int x^2 (e^x)' \, dx = x^2 e^x - \int 2x e^x \, dx = x^2 e^x - 2x e^x + \int 2e^x \, dx = x^2 e^x - 2x e^x + 2e^x.$$

(4)
$$u = \sin x$$
 で置換積分:
$$\int e^{\sin x} \cos x \, dx = \int e^{u} \, du = e^{\sin x}.$$

(5) 部分積分法を 2 回適用する:
$$\int_0^\pi x^2 \sin x \, dx = \left[x^2 (-\cos x) \right]_0^\pi - \int_0^\pi 2x (-\cos x) \, dx = \pi^2 - 4.$$

(6) 多項式の割り算をして,部分分数展開

$$\int \frac{x^3 + x^2 - x + 3}{x^2 + 2x - 3} \, dx = \int (x + 1) \, dx + \int \frac{4x}{(x + 3)(x - 1)} \, dx = \frac{1}{2}x^2 - x + 3\log|x + 3| + \log|x - 1|.$$

(8) 部分積分法:
$$\int \operatorname{Arctan}(3x) \, \mathrm{d}x = x \operatorname{Arctan}(3x) - \int x \cdot \frac{3}{9x^2 + 1} \, \mathrm{d}x = x \operatorname{Arctan}(3x) - \frac{1}{6} \log(9x^2 + 1).$$

(9)
$$\sqrt{4x^2-1}=t-2x$$
 とおいて , 置換積分: $\int \frac{1}{\sqrt{4x^2-1}}\,dx=\int \frac{1}{2t}\,dx=\frac{1}{2}\log \left|2x+\sqrt{4x^2-1}\right|$.

3. (1)
$$\frac{\mu}{N(\mu-N)} = \frac{1}{N} + \frac{1}{\mu-N}$$
 より , $\frac{\mu}{N(\mu-N)} dN = \gamma dt$ の両辺を積分して ,

$$\gamma t + C = \int \gamma \, dt = \int \frac{\mu}{N(\mu - N)} \, dN = \int \frac{1}{N} \, dN + \int \frac{1}{\mu - N} \, dN = \log \left(\frac{N}{\mu - N} \right).$$

ここで, C は積分定数.

(2) 式 (†) に , t=0 を代入して , $C=\log\left(\frac{N_0}{\mu-N_0}\right)$. また , 式 (†) より , $e^{\gamma t+C}=e^{\log\left(\frac{N}{\mu-N}\right)}=\frac{N}{\mu-N}$. これを N について解いて ,

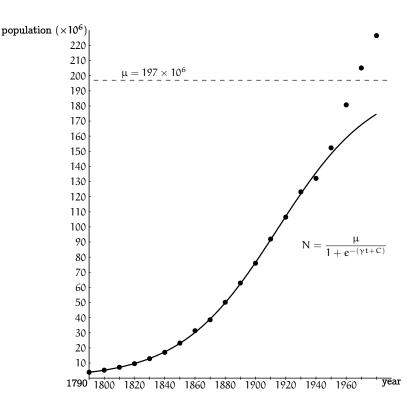
(††)
$$N = \frac{\mu}{1 + e^{-(\gamma t + C)}}$$

を得る.

式 (††) と $e^C=\frac{N_0}{\mu-N_0}>0$ より, $t\geq 0$ のとき,N(t)>0.ゆえに, $\frac{dN}{dt}=\gamma N\cdot\frac{\mu-N}{\mu}>0$.また, $\lim_{t\to\infty}N(t)=\mu$, $\lim_{t\to\infty}\frac{dN}{dt}=0$.したがって,単調増加で直線 $y=\mu$ に漸近するようなグラフを書けば良い(変曲点は問わない).

実際の人口増加と較べてみる.参考書は"微分方程式で数学モデルを作ろう"(デヴィッド・バージェス,モラグ・ポリー著,垣田高夫,大町比佐栄訳/日本評論社).この人口増加モデルの他,薬の吸収,人工腎臓器の数理モデル,刺激に対する反応,惑星の運動,化学反応速度論,種の相互作用,伝染病,などの多分野にわたる数理モデルが紹介されていて,今までの微分積分学 II の知識で問題なく読み進めることができる.

さて, $1790\sim1980$ 年の間の米国の人口増加と較べてみる. $N_0=3.9\times10^6,\,\mu=197\times10^6,\,\gamma=0.3134$ とし,実際の人口の値と N(t) から得られる予測値を下記の表に示してある. $\lim_{t\to\infty}N(t)=\mu$ より, μ は人口増加の上限値を意味している.また,N(t) のグラフを描くと下図のようになる.各点は,各年度の実際の人口をプロットしたものである.この数理モデルは, $1790\sim1930$ 年という長い間,実際の人口の増加具合とよく似ているが,それ以降は大きく離れていく.



年度	人口 (×10 ⁶)	予測値 (×10 ⁶)
1790	3.9	3.9
1800	5.3	5.2
1810	7.2	7.1
1820	9.6	9.6
1830	12.9	13.0
1840	17.1	17.3
1850	23.2	23.0
1860	31.4	30.2
1870	38.6	39.1
1880	50.2	49.8
1890	62.9	62.4
1900	76.0	76.4
1910	92.0	91.5
1920	106.5	106.9
1930	123.2	121.9
1940	132.1	135.8
1050	152.3	148.2
1960	180.7	158.8
1970	205.1	167.5
1980	226.5	174.5

表:年度ごとの米国の人口と予測値

4. (1) u = tan ^x で置換積分:

$$\int \frac{\sin x - 2\cos x}{1 + \sin x + \cos x} \, dx = \int \frac{2(u^2 + u - 1)}{(u + 1)(u^2 + 1)} \, du = \int \left(-\frac{1}{u + 1} + \frac{3u - 1}{u^2 + 1} \right) du = -\frac{x}{2} - \log\left| 1 + \tan\frac{x}{2} \right| + \frac{3}{2} \log\left(1 + \tan^2\frac{x}{2} \right).$$

(2) $u = \sqrt{\frac{2-x}{2+x}}$ で置換積分:

$$\int \frac{1}{(x+4)\sqrt{4-x^2}} \, \mathrm{d}x = -\int \frac{1}{3+u^2} \, \mathrm{d}u = -\frac{1}{\sqrt{3}} \operatorname{Arctan} \sqrt{\frac{2-x}{3(2+x)}}.$$

$$\left(u = \sqrt{\frac{2+x}{2-x}} \, \, \text{で置換積分すると} \, \frac{1}{\sqrt{3}} \operatorname{Arctan} \sqrt{\frac{3(2+x)}{2-x}} \quad (両者は定数 \, \frac{\pi}{2} \, \, \text{だけ違う}) \right)$$

(3) $\mathfrak{u}=\sqrt{x-1}$ で置換積分をして , さらに , $\mathfrak{u}=\tan t$ で置換積分:

$$\int \frac{1}{x^2 \sqrt{x-1}} \, dx = \int \frac{2}{(1+u^2)^2} \, du = \int 2\cos^2 t \, dt = \frac{1}{2}\sin 2t + t = \tan t \cos^2 t + t = \frac{u}{1+u^2} + \operatorname{Arctan} u$$

$$= \frac{\sqrt{x-1}}{x} + \operatorname{Arctan} \sqrt{x-1}.$$

5. (1) $u = e^x$ とおくと , $\int \frac{2}{e^x + e^{-x}} dx = \int \frac{2}{1 + u^2} dx = 2 \operatorname{Arctan} e^x$. ゆえに ,

$$\int_{-\infty}^{\infty} \frac{2}{e^{x} + e^{-x}} dx = \lim_{M \to -\infty} \int_{M}^{0} \frac{2}{e^{x} + e^{-x}} dx + \lim_{N \to +\infty} \int_{0}^{N} \frac{2}{e^{x} + e^{-x}} dx$$

$$= \lim_{M \to -\infty} \left(2 \operatorname{Arctan} 1 - 2 \operatorname{Arctan} e^{M} \right) + \lim_{N \to +\infty} \left(2 \operatorname{Arctan} e^{N} - 2 \operatorname{Arctan} 1 \right)$$

$$= \pi$$

(2) $\frac{1}{\sqrt{|x-1|}}$ は閉区間 [0,2] 上,点 x=1 で連続でないから,

$$\int_{0}^{2} \frac{1}{\sqrt{|x-1|}} dx = \lim_{s \to 1-0} \int_{0}^{s} \frac{1}{\sqrt{1-x}} dx + \lim_{t \to 1+0} \int_{t}^{2} \frac{1}{\sqrt{x-1}} dx$$
$$= \lim_{s \to 1-0} \left[-2\sqrt{1-x} \right]_{0}^{s} + \lim_{t \to 1+0} \left[2\sqrt{x-1} \right]_{t}^{2}$$
$$= 4.$$

(3) まず,不定積分 $\int \frac{1}{\sqrt{-x^2+4x-3}} dx$ を求める. $-x^2+4x-3=-(x-2)^2+1$ より,

$$\int \frac{1}{\sqrt{-x^2 + 4x - 3}} \, dx = \int \frac{1}{\sqrt{1 - (x - 2)^2}} \, dx = Arcsin(x - 2).$$

また, $\frac{1}{\sqrt{-x^2+4x-3}}$ は点 x=1,3 で定義されていないから,

$$\int_{1}^{3} \frac{1}{\sqrt{-x^{2} + 4x - 3}} dx = \lim_{s \to 1+0} \int_{s}^{2} \frac{1}{\sqrt{-x^{2} + 4x - 3}} dx + \lim_{t \to 3-0} \int_{2}^{t} \frac{1}{\sqrt{-x^{2} + 4x - 3}} dx$$

$$= \lim_{s \to 1+0} \left(\operatorname{Arcsin} 0 - \operatorname{Arcsin}(s - 2) \right) + \lim_{t \to 3-0} \left(\operatorname{Arcsin}(t - 2) - \operatorname{Arcsin} 0 \right)$$

$$= \pi.$$

他には , $u = \sqrt{\frac{-x+3}{x-1}}$ とおくと ,

$$\int \frac{1}{\sqrt{-x^2 + 4x - 3}} \, dx = \int \frac{-2}{1 + u^2} \, du = -2 \operatorname{Arctan} u = -2 \operatorname{Arctan} \sqrt{\frac{-x + 3}{x - 1}}.$$

したがって、

$$\begin{split} \int_{1}^{3} \frac{1}{\sqrt{-x^{2}+4x-3}} \, dx &= \lim_{s \to 1+0} \int_{s}^{2} \frac{1}{\sqrt{-x^{2}+4x-3}} \, dx + \lim_{t \to 3-0} \int_{2}^{t} \frac{1}{\sqrt{-x^{2}+4x-3}} \, dx \\ &= \lim_{s \to 1+0} \left(-2 \operatorname{Arctan} 1 + 2 \operatorname{Arctan} \sqrt{\frac{-s+3}{s-1}} \right) + \lim_{t \to 3-0} \left(-2 \operatorname{Arctan} \sqrt{\frac{-t+3}{t-1}} + 2 \operatorname{Arctan} 1 \right) \\ &= \pi. \end{split}$$

6. (1) 例えば, l'Hôpital の定理を使う:

$$\lim_{x \to +0} x \log x = \lim_{x \to +0} \frac{\log x}{\frac{1}{x}} = \lim_{x \to +0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to +0} (-x) = 0.$$

(2) 部分積分法より , $\int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - x$. また , $\log x \, dx = 0$ で定義されていないから ,

$$\int_0^1 \log x \, dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \log x \, dx = \lim_{\varepsilon \to +0} (\varepsilon \log \varepsilon - 1 + \varepsilon) = -1.$$

(3) $0<\varepsilon<1$ より , $I_n(\varepsilon)=\int_{\varepsilon}^1 (-\log x)^n \,dx$ は定積分 . $n\geq 2$ のとき , 部分積分法より ,

$$\begin{split} I_n(\varepsilon) &= \int_{\varepsilon}^1 (-\log x)^n \, dx \\ &= \left[x (-\log x)^n \right]_{\varepsilon}^1 - \int_{\varepsilon}^1 x \cdot n (-\log x)^{n-1} \cdot \left(-\frac{1}{x} \right) dx \\ &= -\varepsilon (-\log \varepsilon)^n + n \cdot I_{n-1}(\varepsilon). \end{split}$$

(4) 帰納法による.n=1 のときは,6(2) より従う.n=k のとき, $\int_0^1 (-\log x)^k \, dx = k!$ が成り立つと仮定する. $\log x$ は x=0 で定義されていないから,広義積分の定義と 6(3) より,

$$\int_0^1 (-\log x)^{k+1} dx = \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 (-\log x)^{k+1} dx = \lim_{\varepsilon \to +0} \left(-\varepsilon (-\log \varepsilon)^{k+1} + (k+1) I_k(\varepsilon) \right).$$

右辺の第一項の極限は l'Hôpital の定理を繰り返し適用することで得られる:

$$\begin{split} \lim_{\varepsilon \to +0} \varepsilon (-\log \varepsilon)^{k+1} &= \lim_{\varepsilon \to +0} \frac{(-\log \varepsilon)^{k+1}}{\frac{1}{\varepsilon}} = \lim_{\varepsilon \to +0} \frac{(k+1) \cdot (-\log \varepsilon)^k \cdot \left(-\frac{1}{\varepsilon}\right)}{-\frac{1}{\varepsilon^2}} \\ &= (k+1) \cdot \lim_{\varepsilon \to +0} \frac{(-\log \varepsilon)^k}{\frac{1}{\varepsilon}} = \dots = (k+1)! \cdot \lim_{\varepsilon \to +0} \frac{-\log \varepsilon}{\frac{1}{\varepsilon}} = 0. \end{split}$$

したがって,帰納法の仮定と合わせて,

$$\int_{0}^{1} (-\log x)^{k+1} dx = (k+1) \lim_{\epsilon \to +0} I_{k}(\epsilon) = (k+1) \lim_{\epsilon \to +0} \int_{\epsilon}^{1} (-\log x)^{k} dx = (k+1) \int_{0}^{1} (-\log x)^{k} dx = (k+1)!$$

を得る.以上のことから,任意の自然数 $\mathfrak n$ について, $\int_0^1 (-\log x)^{\mathfrak n} \ dx = \mathfrak n!$ が成り立つことが示された.